پردازش هوشمند متن

مقدمه

استفاده از رایانه در امور مختلف، باعث شده تا داده های بسیاری با سرعت های زیاد در پایگاه داده ها انباشته و ذخیره شوند. پردازش این داده های حجیم، خارج از توان انسان است. تلاش های فراوانی تاکنون انجام شده است تا نرم افزارها و سخت افزارها توسعه پیدا کنند و تولید، ذخیره و انتقال داده ها انجام گردد؛ اما تجزیه و تحلیل این حجم از داده ها توسط رایانه ها، بعد از ذخیره و پردازش، تاکنون انجام نشده است. داده ها در عصر حاضر، قلب تپنده هر سازمان را تشکیل می دهند و هر روز به میزان داده ها در سیستم های اطلاعاتی افزوده می شود. در واقع، سازمان ها در اطلاعات غرق شده اند؛ درحالی که تشنه دانش هستند. این امر، نشانگر آن است که سازمان ها نتوانسته اند از دانش درون داده ها به نحو مناسب استفاده نمایند. در درون حجم عظیمی از داده ها، الگوها و روابط بسیاری میان پارامترهای مختلف به صورت پنهان باقی می ماند که برای برنامه ریزی های استراتژیک و طولانی مدت می تواند حیاتی باشد. بنابراین، نیاز به ابزاری است تا داده ها را به گونه ای پردازش کند تا دانش حاصل از آن را در اختیار تصمیم گیران سازمان قرار دهد. یکی از راهکارهایی که امروزه در این زمینه ایجاد و در حال گسترش است، داده کاوی(1) است. داده کاوی، فرآیند کشف دانش پنهان درون داده هاست که با توصیف، تشریح، پیش بینی و کنترل پدیده های گوناگون پیرامونی، دارای کاربرد بسیار وسیعی در حوزه های مختلف است؛ به گونه ای که مرز و محدودیتی برای کاربرد آن در نظر گرفته نشده و زمینه های کاربردی آن را از ذرات کف اقیانوس تا اعماق فضاء می دانند (شهرابی، 1386).

  • نویسنده: خدیجه مرادی* این آدرس ایمیل توسط spambots حفاظت می شود. برای دیدن شما نیاز به جاوا اسکریپت دارید

چکیده

سازمان دهی دانش و متن کاوی، در بازیابی دقیق اطلاعات کاربرد بسیاری دارند. از این رو، متن کاوی می تواند کارکردهای بسیاری در بهبود سازمان دهی دانش داشته باشد. اگرچه متن کاوی، به ویژه در بخش یادگیری ماشینی و به دست آوردن اسناد و نمونه های آموزشی، نیازمند نظام های اصطلاح نامه، طبقه بندی، فهرست نویسی و نمایه سازی است، سازمان دهی برای تسریع کار خود، نیازمند فنون متن کاوی و نتیجه کارهای آن خواهد بود تا هم سرعت کار خویش را افزایش دهد و هم هزینه هایش را بکاهد. در این نوشتار، به کارکردهای متن کاوی در حوزه سازمان دهی دانش پرداخته خواهد شد.

  • نویسنده: مصطفی علیمرادی این آدرس ایمیل توسط spambots حفاظت می شود. برای دیدن شما نیاز به جاوا اسکریپت دارید

چکیده

با گسترش روزافزون حجم اطلاعات، نیاز به سیستم‌های کامپیوتری جهت پردازش و تحلیل اطلاعات بیشتر احساس می‌شود. از آنجا که درصد قابل توجهی از اطلاعات تولید شده به صورت متنی غیر ساختار یافته(1) و نیمه‌ساختار یافته(2) است، سیستمی که بتواند این اطلاعات را تحلیل و پردازش کند، به‌شدت مورد توجه قرار خواهد گرفت. یکی از انواع سیستم‌هایی که در تحلیل و پردازش متون وجود دارد، سیستم‌های خلاصه‌ساز متن(3) است که حجم زیادی از متن را دریافت نموده و بر اساس الگوریتم‌ها و تکنیک‌های مختلف، آن را خلاصه می‌نماید. این مقاله به معرفی فرآیند خلاصه‌سازی متون فارسی می‌پردازد.

  • نویسنده: دکتر بهروز مینایی؛ عضو هیأت علمی دانشگاه علم و صنعت ایران/ دبیر هیأت علمی مرکز تحقیقات کامپیوتری علوم اسلامی این آدرس ایمیل توسط spambots حفاظت می شود. برای دیدن شما نیاز به جاوا اسکریپت دارید ، احسان براتی؛ کارشناسی ارشد مهندسی فناوری اطلاعات دانشگاه قم این آدرس ایمیل توسط spambots حفاظت می شود. برای دیدن شما نیاز به جاوا اسکریپت دارید

چکیده

در این مستند، به یکی از دغدغه‏ های بزرگ در زمینه زبان‏شناسی محاسباتی(1) با نام برچسب‏گذاری ادات سخن (part of speech tagging) پرداخته شده است. برچسب‏گذاری ادات سخن که یکی از پایه‏ای‏ترین نیازهای پردازش هوشمند متن به شمار می‏آید، وابسته به زبان متن مورد پردازش است. از این رو، فراهم شدن برچسب‏گذاری قوی برای زبان فارسی، جزو اولویت‌های کار ما قرار گرفت. تکنیک مورد کاربرد ما برای حل این مسأله، استفاده ازمدل مخفی مارکوف(2) بوده است. این تکنیک در بسیاری از شیوه‏ های برچسب‏گذاری به کاربرده می‏شود؛ برای نمونه، در برچسب‏گذار TNT[2] که یکی از قوی‌ترین برچسب‏گذارها در زبان‏های مختلف است[4, 5, 8]. طبق آزمایش‌های انجام شده ما، با استفاده از این برچسب‏گذار می‏توان با دقت 94.3% برچسب گونه صرفی کلمات فارسی را مشخص نمود.

  • نویسنده: محمدحسین الهی‌منش؛ دانشجوی‌ کارشناسی‌ ارشد هوش مصنوعی دانشکده‌ مهندسی کامپیوتر دانشگاه آزاد اسلامی قزوین/ کارشناس گروه پژوهشی متن‌کاوی نور این آدرس ایمیل توسط spambots حفاظت می شود. برای دیدن شما نیاز به جاوا اسکریپت دارید ، دکتر بهروز مینایی؛ عضو هیأت علمی دانشگاه علم وصنعت ایران/ دبیر هیأت علمی مرکز تحقیقات کامپیوتری علوم اسلامی این آدرس ایمیل توسط spambots حفاظت می شود. برای دیدن شما نیاز به جاوا اسکریپت دارید

اشاره

نرم‌افزار «ویراستیار»، یک خطایاب املایی متن‌باز (open source) فارسی است که نسخۀ اول آن در زمستان سال گذشته عرضه شد و به کاربر خود این امکان را می‌دهد که متن نگاشته شدۀ فارسی در محیط مایکروسافت وُرد را اصلاح کند. اگر چه این نرم‌افزار هنوز هم در حال توسعه و تجدید ویراست است و از زمان رونمایی آن در زمستان 1389 تاکنون، به ویژگی‌ها و قابلیت‌های آن افزوده شده است، اما نهاد توسعه دهندۀ آن، یعنی دبیرخانۀ شورای عالی اطلاع‌رسانی ترجیح داده است تا آن را به صورت متن باز عرضه کند تا باب هم‌افزایی در این حوزه را باز کند.

  • نویسنده: امید کاشفی این آدرس ایمیل توسط spambots حفاظت می شود. برای دیدن شما نیاز به جاوا اسکریپت دارید

چکیده

در این گزارش، سعی شده است تا یکی از تکنیک‌های موفق در زمینه رده‌بندی متون را برای متون فارسی به کار بندیم. به عنوان تعریفی ساده از رده‌بندی متون، می‌توان روند شناسایی رده یا طبقه یک متن ناشناخته را بیان نمود. در این روش ما با استفاده از روش رده‌بندی K نزدیک‌ترین همسایه(1) و دو معیار فاصله متون، آزمایش‌های خودمان را انجام داده‌ایم. یکی از این دو معیار، الگو گرفته از نوعی رده‌بندی متون زبان عربی[4]‌ بوده و دیگری، معیار ترکیبی تولید شده خودمان است. مجموعه آزمایش‌ها بر روی پیکره همشهری[1] است. این دو نوع فاصله‌سنجی، هر کدام با الگوریتم نزدیک‌ترین همسایه ترکیب شده و رده‌بند 1 تا 20 نزدیک‌ترین همسایه را برای آزمایش‌های ما آماده کرده‌اند. نتایج ما نشان می‌دهد که این روش می‌تواند با دقت(2) 89% عمل رده‌بندی را انجام دهد.

  • نویسنده: محمد حسين الهي‌منش؛ دانشجوی ارشد هوش مصنوعی دانشکده مهندسی برق و کامپیوتر دانشگاه آزاد اسلامی قزوین/کارشناس گروه پژوهشی متن‌کاوی نور، دکتر بهروز مينايي؛ استادیار دانشکده مهندسی کامپیوتر دانشگاه علم وصنعت ایران/دبیر هیأت علمی مرکز تحقیقات كامپيوتري علوم اسلامی این آدرس ایمیل توسط spambots حفاظت می شود. برای دیدن شما نیاز به جاوا اسکریپت دارید

چکیده

خطایابی،(1) شامل دو بخش اصلی است: بخش اول، بهره‌گیری از یک واژه نامه(2) است و بخش دوم، مجموعه‏ ای از الگوریتم‏ ها و شگردها(Techniques) می‏باشد که این واژه ‏نامه برای خطایابی استفاده می‏کند. این شگردها‏  به سه دسته‏ اصلی تقسیم می‏شود: 1. جستجو در واژه‏ نامه؛ 2. یافتن لغت صحیح جایگزین در واژه ‏نامه؛ 3. رتبه‌بندی اصلاحات.

  • نویسنده: دکتر بهروز مینایی؛عضو هیأت علمی دانشگاه علم و صنعت ایران/دبیر هیأت علمی مرکز تحقیقات کامپیوتری علوم اسلامی این آدرس ایمیل توسط spambots حفاظت می شود. برای دیدن شما نیاز به جاوا اسکریپت دارید ،محمّدحسین شیخ‏ الاسلام؛مرکز تحقیقات کامپیوتری علوم اسلامی نور این آدرس ایمیل توسط spambots حفاظت می شود. برای دیدن شما نیاز به جاوا اسکریپت دارید

چکیده

برجسته کردن عبارات قرآنی در متون مکتوب - چه با تغییر در نوع نوشتار و چه با استفاده از علائم ویرایشی - موضوعی است که قرن‌ها مورد توجه مؤلفان، نسخه‌برداران و ناشران قرار گرفته است. همچنین، فهرست‌برداری از این عبارات و درج آنها به صورت آماری در بخش پایانی کتب نیز در تألیفات دهه‌های اخیر متداول بوده است. مرکز تحقیقات کامپیوتری علوم اسلامی، طی بیش از دو دهه فعالیت خود تلاش نموده تا محوریت قرآن و حدیث را در نرم‌افزارهای تولیدی حفظ نماید که این تلاش‌ها ابتدا تفاوت چندانی با مدل مکتوب نداشته است؛ اما به مرور زمان روش‌های ابتکاری نوینی برای سرعت و دقت بیشتر به کار گرفته شده که آخرین آنها طرح «جستجوی هوشمند عبارات قرآنی در متون دیجیتال» می‌باشد.

  • نویسنده: محمد حبیب‌زاده بیژنی این آدرس ایمیل توسط spambots حفاظت می شود. برای دیدن شما نیاز به جاوا اسکریپت دارید

مقدمه اول‌:  با بررسی کوتاهی در طول زندگانی انسان‌ها می‌فهمیم که همیشه نیاز‌ها‌، علت ساخت ابزار‌ها بوده است‌. نقاط ضعف و مشکلات حل نشدنی‌، انسان‌ها را واداشته که از نیروی خدادادی تفکر استفاده کنند و راه حل‌هایی برای رفع آن بیابند‌. همین روند، صاحب نظران را به این رساند که «نیاز، عامل ایجاد علوم بود»‌.

  • نویسنده: حامد مقیسه این آدرس ایمیل توسط spambots حفاظت می شود. برای دیدن شما نیاز به جاوا اسکریپت دارید

مقدمه

موضوع گرامر زبان (نحو)، یکی از موضوعاتی است که در پردازش زبان طبیعی مورد توجه قرار می‌گیرد. گرامر زبان، یعنی بررسی چینش کلمات و نقش هر واژه در کنار سایر واژگان. از مهم‌ترین موضوعاتی که می‌توان در گرامر زبان مطرح کرد، بحث عطف است. عطف، به منزله مفصلی است که قسمتی از عبارت پس از خود را به قبل آن مربوط می‌سازد. یکی از دلایلی که بررسی عطف را در اولویت قرار می‌دهد، میزان استفاده و فراوانی آن در متون است. مشخص شدن رابطه کلمه پس از حرف عطف با پیش از آن، هم به پیدا کردن نقش کلمه پس از حرف عطف کمک کرده و هم در مرحله‌های بعدی به یافتن رابطه معنایی جملات کمک خواهد کرد.

  • نویسنده: محمدرضا جوان آراسته؛ کارشناس گروه پژوهشي متن‌کاوي نور مرکز تحقيقات کامپيوتري علوم اسلامي این آدرس ایمیل توسط spambots حفاظت می شود. برای دیدن شما نیاز به جاوا اسکریپت دارید ،دکتر بهروز مينايي عضو هيأت علمي دانشگاه علم وصنعت ايران/ دبير هيأت علمي مرکز تحقيقات کامپيوتري علوم اسلامي این آدرس ایمیل توسط spambots حفاظت می شود. برای دیدن شما نیاز به جاوا اسکریپت دارید

مقدمه

متن‌کاوی (Text Mining)، دانش استخراج خودکار الگوهای پنهان از متون حجیم است. یکی از علوم مرتبط با متن‌کاوی، پردازش زبان طبیعی (NLP) نام دارد. از مهم‌ترین ابزارهای پردازش زبان طبیعی نیز می‌توان به برچسب‌گذاری ادات سخن (Part of Speech Tagging) اشاره کرد. برچسب‌گذاری خودکار متن، در هر زبانی در دو حوزه مهم پیگیری می‌شود. اول حوزه ریخت‌شناسی (Morphology) (صرف) و دوم گرامر(نحو). در صرف،(1) کلمات جدای از هم، مستقل از یکدیگر و تنها با توجه به ساخت‌شان مورد بررسی قرار می‌گیرند؛ اما در نحو،(2) جایگاه هر کلمه در کنار سایر کلمات مد نظر قرار می‌گیرد. جایگاه صرف نسبت به مباحث نحوی، جایگاه تقدمی است. در واقع، تا زمانی که ساختار صرفی کلمات در یک متن مشخص نشده باشد، ورود به حوزه نحو کاری بی‌سرانجام می‌نماید.

  • نویسنده: محمد‌رضا جوان آراسته؛ کارشناس گروه پژوهشی متن‌کاوی نور مرکز تحقیقات کامپیوتری علوم اسلامی این آدرس ایمیل توسط spambots حفاظت می شود. برای دیدن شما نیاز به جاوا اسکریپت دارید ،دکتر بهروز مینایی؛ عضو هیأت علمی دانشگاه علم و صنعت ایران/ دبیر هیأت علمی مرکز تحقیقات کامپیوتری علوم اسلامی این آدرس ایمیل توسط spambots حفاظت می شود. برای دیدن شما نیاز به جاوا اسکریپت دارید

مقدمه

انسان‌ها برای انتقال مقصود خود به مخاطب، از راه‌های مختلفی استفاده می‌کنند. یکی از متداول‌ترین روش‌ها، استفاده از تکلّم (گفتاری و نوشتاری) است. در پردازش سخن، گوینده با به کارگیری کلمات، در قالبی به نام جمله، هدف خود را به مخاطب می‌فهماند. برای فهم هدف متکلّم لازم است مخاطب، جملات او را از جنبه‌های گوناگون مانند: محدوده، معنا،(1) اعراب و ... مورد بررسی قرار دهد و تنها بهره‌‌گیری از تجزیه کلمات و تکیه بر نقش آنها برای تشخیص جمله کافی نیست. شناخت محدوده جمله که تعیین ابتدا و انتهای جملات است، نخستین مرحله پردازش جمله به شمار می‌آید. پس از آن، اعراب و لایه‌ معنا‌شناسی قرار دارد.

  • نویسنده: محمد امین الهی منش؛ کارشناس گروه پژوهشی متن‌کاوی نور مرکز تحقیقات کامپیوتری علوم اسلامی این آدرس ایمیل توسط spambots حفاظت می شود. برای دیدن شما نیاز به جاوا اسکریپت دارید ، دکتر بهروز مینایی؛ عضو هیأت علمی دانشگاه علم و صنعت ایران/ دبیر هیأت علمی مرکز تحقیقات کامپیوتری علوم اسلامی این آدرس ایمیل توسط spambots حفاظت می شود. برای دیدن شما نیاز به جاوا اسکریپت دارید
صفحه1 از2
شما اينجا هستيد:خانه فهرست موضوعی پردازش هوشمند متن